Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38048513

RESUMEN

Multimaterial aerosol jet printing offers a unique capability to freely mix inks with different chemical compositions in the aerosol phase, enabling one-step digital fabrication with tailored compositions or functionally graded structures, including in the x-y plane. Here, in situ mixing of two carbon nanomaterial inks with distinct electrical properties is demonstrated. By tailoring the mixing ratio of the constituent inks, electrical conductivity is modulated by 130×, and sheet resistance values for a single pass span approximately 2 orders of magnitude. The ability to manufacture components with tailored electrical properties offers significant value for hybrid and flexible electronic device applications, such as microelectronics packaging. Moreover, grading properties within a part provides a new dimension of design freedom for complex assemblies.

2.
ACS Appl Mater Interfaces ; 15(2): 3325-3335, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36608034

RESUMEN

Aerosol jet printing is a noncontact, digital, additive manufacturing technique compatible with a wide variety of functional materials. Although promising, development of new materials and devices using this technique remains hindered by limited rational ink formulation, with most recent studies focused on device demonstration rather than foundational process science. In the present work, a systematic approach to formulating a polymer-stabilized graphene ink is reported, which considers the effect of solvent composition on dispersion, rheology, wetting, drying, and phase separation characteristics that drive process outcomes. It was found that a four-component solvent mixture composed of isobutyl acetate, diglyme, dihydrolevoglucosenone, and glycerol supported efficient ink atomization and controlled in-line drying to reduce overspray and wetting instabilities while maintaining high resolution and electrical conductivity, thus overcoming a trade-off in deposition rate and resolution common to aerosol jet printing. Biochemical sensors were printed for amperometric detection of the pesticide parathion, exhibiting a detection limit of 732 nM and a sensitivity of 34 nA µM-1, demonstrating the viability of this graphene ink for fabricating functional electronic devices.

3.
Mikrochim Acta ; 189(3): 123, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35226191

RESUMEN

Printed graphene electrodes have been demonstrated as a versatile platform for electrochemical sensing, with numerous examples of rapid sensor prototyping using laboratory-scale printing techniques such as inkjet and aerosol jet printing. To leverage these materials in a scalable production framework, higher-throughput printing methods are required with complementary advances in ink formulation. Flexography printing couples the attractive benefits of liquid-phase graphene printing with large-scale manufacturing. Here, we investigate graphene flexography for the fabrication of electrodes by analyzing the impacts of ink and process parameters on print quality and electrical properties. Characterization of the printed patterns reveals anisotropic structure due to striations along the print direction, which is related to viscous fingering of the ink. However, high-resolution imaging reveals a dense graphene network even in regions of sparse coverage, contributing to robust electrical properties even for the thinnest films (< 100 nm). Moreover, the mechanical and environmental sensitivity of the printed electrodes is characterized, with particular focus on atmospheric response and thermal hysteresis. Overall, this work reveals the conditions under which graphene inks can be employed for high-speed flexographic printing, which will facilitate the development of graphene-based sensors and related devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...